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Abstract. Neural neiworks storing Hadamard patiems have teen mmpietely classified wilh 
respect to permutltion symmetry. The symmetry g ” p  of the Hadamard pattems is found to be 
isomorphic to GL(n. Fz). and the symmetry groups of the networks are explicitly constructed for 
the most important classes. The volumes of different equivalence classes have been calculated. 

Symmetry plays an important role in unification and classification of physical systems [I], 
e.g. crystals by their point group symmetry or the atomic nucleus by the isospin symmetry. 
In the first case, invariance under rotations and inversions in real space is considered 
and the knowledge of the invariance group is used in simplifying the calculation of~the 
dynamical behaviour of the crystal, e.g. its phonon spechum. In the second example, 
the invariance under the group SU(2)  leads to the multiplet representation of the nucleus 
structure. Permutation symmetry may also be importan$ a prominent example is the 
replica symmetry breaking in the spin glass theory, where a classification of t&e mean 
field theoretical solutions is achieved by consideration of their invariance under subgroups 
of the symmetric group [21. 

Another object for which the study of symmetries proves to be very fruitful is the area 
of neural networks. Global properties of an individual network can be found from symmetry 
considerations of the invariance group of the specific pattern-set stored by some learning 
rule [3,4], e.g. the metastable states can be partitioned into orbits und& the group action. 

In the present paper a new approach to study symmetry properties of neural networks 
is proposed. It is general in the following aspects: 

(i) Symmetry features of a network  are found not one-by-one but according to the 
g e n e d r e s u l ~  conceming the action of lineargroups over finite fields. In pflcular it made 
it possible for us to find for Hopfield networks with Hadamard prototypes [5] all possible 
symmetries; 

(ii) It is possible in this way to describe classes of networks with same symmetry 
features, which enables the study of the dynamical properties of networks belonging to one 
and the same class collectively; 

(iii) The approach is also applicable to various learning rules as long as these do not 
take into account the numbering of pattems Stored. 

In &e present paper we are going to demonstrate the advantages of this approach for 
the case of Hadamard pattern sets. 
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Hadamard patterns play an important role in optics [6-81 (for recovery of blurred images) 
as well as coding theory [9] (construction of error-correcting codes). The reason is that 
the orthogonal pattems of Hadamard type have a very rigid structure, which can be fully 
reconstructed even after a substantial damage. They can be defined recursively [5]; below 
we give a variant of such a construction. 

For a vector v = (no, V I ,  . . . , um-l) from the space Fzm, the vector space over the finite 
field Fz of two elements 0, 1, we define its complement i? = (1 - v g .  1 - V I ,  . . . , 1 -U, , , -& 
Thus E = v. For each n,  let a set of vectors H. C FT be defined inductively as follows. 
The set HO = ((O)] and for i 2 0, Hi+l consists of all vectors having the forin (h, h) or 
(h, E), where h is any vector from Hi. Thus Hi+l con&ns twi& as many vectors as Hi, 
e.g. 

H I  = I(0.0). (0. 1)) 
Hz = ((O,O,O,O), (0,0,1, I), (0, I,O, I), (0.1, L0)I 

We call H, the set of Hadamard vecfors (patterns) of length 2". Notice that the first 
vector component is always zero. 

In general, Hn consists of 2" vecton. These vectors can also be considered as elements 
of R'", since Fz can be embedded in -any other field in a natural way. We shall specify the 
particular vector space when necessary. 

We use the concept of (left) group action in its usual sense. The reader may find an 
introductory information on group action in the first chapter of the book [IO]. Let S, be 
the symmetric group of degree d ,  i.e. consisting of all permutations of the elements from 
the set (1,2, . . . , d) .  For each subgroup G of $ 2 ~ 1  we introduce the action of G on FT: 

G x F T + $  (a, h) H ah 

where for each x E G and h E FY, we set 

nh = (0, h,+Cl), .. ., h,-lp-1,). 

For example, for n = 2, the transposition a = (1,3) E S, and h = (0, 0,1,1) E HZ we 

The symmetry group of H, is defined as the unique subgroup C ,  of Sp-1 consisting of 
have nh = (0, 1, 1,O). 

all permutations which map Hadamard pattems to Hadamard patterns: 

Obviously, GI = S1 and Gz = S,. In fact, n = 1.2 are the only trivial cases with 
G, = $2"-1. For example, lGsl = 168 whereas Isp-11 = 5040. 

We have proved that for each n E N ,  G, is isomorphic to GL(n, Fz), the group of all 
non-singular n x n matrices over Fz. 

In addition, we have shown that the group isomorphism can be extended in a natural way 
such that the action of G. on H, is carried over one-to-one onto the action of GL(n, Fz) 
on F;. The latter action is by matrix multiplication to an F;-vector. (We give all details 
of this isomorphism in our forthcoming paper [ll].) 

This fact, being the crucial point of our work, allows us to reduce the classification of 
Hadamard pattern sets with respect to the G,-symmetry to the well understood study of 
certain aspects of the GL(n,  Fz)-action. 
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For specific reasons we omit the trivial pattern (O,O, . . . , 0): . 

7-1. := ffn \ ((0,. . . , O)] for each n .  
2 - 
- 

. .  

The set of all subsets of 7-1; with cardinality k is denoted as (?), i.e. 

Our main objects of interest are Hebbian neural networks in which an element S E e) 
has been stored We call them Hadamard networks. For convenience we here switch from 
the (0, 1) coding of the patterns to the (1, -1) coding; the coupling matrix J = IlJiill of 
such a network read.- 

k 

Jij = hrhy 
p=1 

where i, j = 1,.  . . ,2" - 1 , J0.0 = 1, J o , ~  = Ji.0 = Et=, hr  and & indexes some 
k Hadamard pattems hl, . . . , hk. The action of the permutation group S p - I  on the set 
[I ,  . . . ;2" - I}'naturally corresponds to an action on the networks: it is evident that the 
matrix of a network obtained from J by the action  of a permutation ir, J' = nJ, ieads 

k 
J!. 'J = ~ h ~ - , , i ~ h : . , u ,  

p=' 

aid is therefore equal to the matrix of a Hebbian network storing the correspondingly 
permuted patterns. For permutations a belonging to the group G. the permuted pattems 
are also Hadamard and the resulting matrix is the matrix of some other Hadamard network, 
namely the one which stores pattems ah', ah', . . . , nhk. The action of G, on H, naturally 
extends to an action of G. on e) by n(h', h2,. .. , hk) = [ah1, &,. . . , ahk). Under 
this action (2) falls into orbits such that all networks storing pattem sets from the same orbit 
coincide up to a renumbering of neurons. Evidently, dynamic features of networks from one 
orbit coincide, e.g. the number of fixed points, mixed states, and retrieval properties. This 
leads to a natural classification of Hadamard networks by the orbits of the corresponding 
Hadamard pattem sets. 

We next study the 'Hadamard pattern set classes', finding the number of classes C",' 
and their orbit lengths O,?k, as well as constructing their canonical representatives. Based 
on certain infomation about CL(n,  F2) group conjugacy claises,~the number of Hadamard 
pattem set classes may be computed by a variant of the Cauchy-Frobenius lemma ([IO], 
pp 11, 79). Again, the details of this computation will be presented in [ll]. In table 1 we 
give just the class numben-for small values of n (columns) and k (rows). 

The following exact results on the class numbers have been proved [Ill: 
(i) for 0 < k < 2" - 1, C"~*'-'-' = Cn.'. , 
(ii) for n > k, C"vk = Ck,k; 
(iii) Ck.k - ck-',' = 1. 
(iv) Ck-l,k - Ck-Z,k = k - 2 .. , 

(v) Ck-2.' - ck-3 .k  = [(2k3 + 21k2 - 222k)/123 t 6; 
3~ 
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Table 1. Class numben for small values of n (columns) and k (rows). 

n 

k 1 2 3 4 5  6 7 8 9 10 
I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

1 1 
1 1 
2 2  
2 3  
1 4  
1 5  
1 6  

6 
5 
4 
3 
2 
1 
1 
1 

- 
- 
- 
- 
- 
- 
- 
- 

I 
1 
2 
3 
5 
9 
14 
21 
34 
50 
67 
91 
1 I3 
129 
145 

1 
1 
2 
3 
5 
10 19 

35 
72 
155 
340 
791 
1907 
4708 
11780 

1 
1 
2 
3 
5 
10 
20 
41 
94 
235 
652 
2076 
7 539 
31 500 
149273 

1 
1 
2 
3 
5 
10 
20 
42 
101 
267 
803 

2897 
12637 
68691 
469 936 

1 
1 
2 
3 
5 
10 
20 
42 

102 
275 
847 

3 163 
14585 
86 625 
683 709 

1 
1 
2 
3 
5 
10 
20 
42 
102 
276 
856 
3222 
15025 
90913 
741 393 

where in (v) [X I  denotes the greatest integer less or equal x. These results are obtained by 
considering the Hadamard pattern sets as tuples of vectors from F;. Then the differences 
Ck-',k - Ck-i-l.k turn out to be numbers of classes which, as vector tuples, have the same 
rank; for i = 0, 1 ,2  they have been found by methods of linear algebra. 

It can be seen from the table that the class numbers 'explode' even for modest values of 
n and k.  However, most of the networks are contained in a very limited subset of classes. 
Namely, the following results have been obtained by direct calculation of the stabilizers 
(i.e. symmetry groups) of different classes. 

(i) For k fixed and n going to infinity, a single class ('the winner') contains virtually 
all the networks [12], in fact the part of networks not belonging to that class decreases 
exponentially with n: 

where 0;' and Onsk denote the orbit length of the winner and the total number of pattem 
sets, respectively. The pattem sets of this class, considered as vector tuples, consist of 
independent vectors. 

(ii) Fork = n (on the diagonal of the table) and n large the winner class contains about 
29% of all networks: O r / O n , n  Z 0.288788. 

(iii) There exist exactly k - 2 classes with rank k - 1. Denoting their orbit lengths as 
Ol!l,d, 1 c d c k - 1, we have 

The union of these orbits is 

(iv) For k = n, n large, the classes of rank n - 1 contain about 58% of all networks: 
O:?, /On*' Z 0.57758. 
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(v) The classes of rank k - 2 can be characterized by four parameters do, d., dI, dn 
satisfying do + d, + dI + dn = k - 2, 0 6 4, 2 6 dt 6 dn, d. < (dt + 1)/2, with the 

. .  corresponding orbits: 

(vi) For k = n, n large, the classes of rank n - 2 contain about 13% of all networks: 

Taking (ii), (iv), and (vi) together, we see that on the diagonal all the classes not teated 
explicitly contain no more than just 0.5% of the networks. 

Representatives of all the classes can also be obtained by methods similar to those of 
[IO, ch 71. However, there is no convenient algorithm to judge if two networks belong 
to one and the same class. Verification of this by direct application of the p u p  action 
is impractical because the order of the p u p  grows rapidly with n. However, there exists 
a simple method which answers the question in a vast majority of cases. Namely, we 
can analyse the distributions of the coupling weights of the two network matrices. The 
distribution of coupling weights is permutation invariant, so networks of the same class 
have equal distributions. The inverse holds for networks generated by pattern sets of rank 
k and k - 1. For networks of the rank k - 2 it has not been proven, but the classification 
can be accomplished by finding the invariants do, du, dr. dn. 

An important quantity for the performance of networks with N neurons and k pattems 
is the number Mk, N = 2" of the fixed points of the network's dynamics. General results 
are known for random patterns [13] but also for Hadamard pattems [14]. An interesting 
point is that formulae could be derived for the cases k = N - i. i = 1,2,3 but not for 
i > 4. This can immediately be understood from property (i) of the class numbers showing 
that there are at least two classes for these cases instead of only one class. These two 
classes have different number of fixed points as the explicit result fork = 12, N = 16 [ l S ]  
shows. On the other hand a general formula could be derived for the case k = n with n 
odd [141. Although for this case more than one class exist, one concludes that they have 
the same number of fixed points. We want to note that from the results for a network with 
N = 16 we see that Hadamard networks have in the mean a much larger number of fixed 
points than networks with the same number of random pattems. We attribute this to the 
larger symmetry group of Hadamard networks. 

The ideas presented in this letter may be applied to other pattern sets constructed in a 
more general way: 

(i) the neuron could instead of a two-state unit be a q-state unit, e.g. if one considers 
block codes for words over an alphabet of q symbols; 

(ii) the iteration rule for constructing the pattems can be altered. In this way we can 
introduce other spaces than Fz; e.g. Fq if q = p' with p a prime number, 

O,y;/O"." = 0.128 3s. 
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